
[""', ".."~c..j, -+ 2

Lecture 1
Introduction to C++ Programming

Objectives

• To be able to write simple computer programs in c++.

• To be able to use simple input and output statements.
c ~ .J \~ \.....~\u.r.t \, ~

• To become familiar with fundamental data types.

• To be able to use arithmetic operators.

• To understand the precedence of arithmetic operators.

Lecture·1
Introduction to.C++ Programming

1.1 A Simple Program: Printing a Line of Text
We begin by considering a simple program that prints a line of text.

1) II Fig. 1.1: fig01_01.cpp

2) II A first program in C++

3) #include <iostream>

4)

5) int mainO

6) {

8)

9) return 0; II indicate that program ended successfully

10) }

This program illustrates .'several important features of the C++ language.

We consider each line of the program in detail. Lines 1 and 2

II Fig. 1.1: figQ.1_01.cpp

II A first program in C++

each begin with II indicating that the remainder of each line is a comment.

Programmers insert comments to document programs and improve.
program readability. C++ supports two kinds of comments. The first one

uses the pairs of cha\-acters 1* and *1 to define the comment's range. This

range can be confined within the same line, or it can span several lines.

The second kind of comments in C++ uses the II character pair to mark

the beginning of a comment that strictly runs to the end of the same line.

Line 3

#include <iostream>

.../'

is apreprocessor directive, i.e., a message to the c++ preprocessor. Lines

beginning with # are processed by the preprocessor before the program is

compiled. This specific line tells the preprocessor to include in the

program the contents of the input/output stream header file <iostream>.

This file must be included for any program that outputs data to the screen

or inputs data from the keyboard using C++-style stream input/output.

Line 5

int mainO

is a part of every c++ program. The parentheses after main indicate that

main is a program -building block called a function. C++ programs

contain one or more functions, exactly one of which must be main. C++

programs begin executing at function main, even if main is not the first

function in the program. The keyword int to the left of main indicates

that main "returns" an integer (whole number) value.

The left brace, {, (line 6) must begin the body of every function. A

corresponding right brace, }, (line 10) must end the body of each function.

Line 7
std::cout « "Welcome to C-J+!\n";

instructs the computer to print on the screen the string of characters

contained between the quotation marks. The entire line, including

std::cout, the « operator, the string "Welcome to C++!\n" and the

semicolon (;), is called a statement. Every statement must end with a

semicolon (also known as the statement terminator). Output and input in

C++ is accomplished with streams of characters. Thus, when the

preceding statement is executed, it sends the stream of characters

Welcome to C++! to the standard output stream object--std::cout--which

is normally "connected" to the screen.

~.

Notice that we placed std:: before coutoThis is required when we use the

preprocesso~ directive #include <iostream>. The notation std::cout

specifies that we are using a name, in this case cout, that belongs to

"namespace" std. Namespaces are an advanced c++ feature

The operator« is referred to as the stream insertion operator. When this

program executes, the value to the right of the operator, the right

operand, is inserted in the output stream. The characters of the right,

operand normally print exactly as they appear between the double quotes.

Notice, however, that the characters \n are not printed on the screen. The

backslash (\) is called an escape character. It indicates that a "special"

character is to be output. When a backslash is encountered in a string of

characters, the next character is combined with the backslash to form an

escape sequence. The escape sequence \n means newline. It causes the

cursor (i.e., the current screen position indicator) to move to the

beginning of the next line on the screen. Some other common escape

sequences are listed below.
Escapc Sequence
\n Newline.
\t Horizontal tab.
\r Carriage return.

Description
Position the screen cursor to the beginning of the next line.
Move the screen cursor to the next tab stop.
Position the screen cursor to the beginning ofthe current line; do not
advance to the next line.
Sound the system bell.
Used to print a backslash character.
Used to print a double quote character.

\a Alert.
\\ Backslash.
\" Double quote.

Welcome to C++! can be printed several ways. For example:
std::cout « "Welcome m tom \n C++!\n";
std::cout « "Welcome"«" to"«" C++!\n";

Line 9
return 0; II indicate that program ended successfully

is included at the end of every main function. C++ keyword return is one

of several means we will use to exit afunction. When the return statement

is used at the end of main as shown here, the value 0 indicates that the

program has terminated successfully

1.2 Naming Items in C++
When naming items in C++, you need to observe the following rules:

• The first character of a name must be a letter or an underscore U.
• Subsequent characters may be underscores, letters, or digits.

• Identifiers in C++ are case-sensitive. For example, the names volume,

VOLUME, VOLume, and Volume are four different identifiers.

• You cannot use reserved words, such as int, double, or static, as

identifiers.

Here are examples of valid identifiers:

y.
x
myString
HOURS_PER_DA Y
HexNumberl
hex_number_l
hex 1Number3
_Length
length

1.3 Declaring Variables

C++ requires that you declare variables before you use them. Typically,

you declare variables at the beginning of a function's body. The general

syntax for declaring a variable is:
II form 1

type variableName;
II form 2

type variableName = initialValue;

Figure 1-2 declares the char-type variables cCharl, cChar2, and

cChar3. The declaration of';',variable --tCharl does not include

initialization. The function main assigns the character literal '!' to

variable cCharl. By contrast, the function main declares the variable

cChar2 and initializes it with the character literal '#'. As for the variable

cChar3, the function main declares it and initializes it using the value in

variable cChar2. The output of -the program confirms that variables

I cChar2 and cChar3 store the '#' character.

mainO
{
char cCharl;
char cChar2 = '#';
char cChar3 = cChar2;

cout « cCharl « "\n"
<<;: cChar2 «"\n"
«cChar3 « "\n";

return 0;
}

Figure 1-2

1.4 Predefined Data Types
Typically, programming languages offer predefined data types to manage

fundamental kinds of data, such as characters, integers, floating-point

numbers, and strings. Such data types represent the building blocks for

user-defined data types.

Table 1-1 shows the predefined data types in e++. Your particular

compiler may support additional types. Notice that some of the examples

in Table 1-1 show numbers that start with the characters Ox.This is how

hexadecimal numbers are represented in c++. For example, the decimal

integers 1241 and the hexadecimal integer OxfJ. are equivalent.

a e - : re e me aa ypes m
IData Type Il~r::IIRange IIExamPles

I
[boo I III IIfalse and true IIfalse, true I
I~har III IFI28 to 127 II'A','@' I
\signed char III IFI28 to 127 1123 I
lunsigned char III 110to 255 11250,Oxlc I
lint (l6-bit) 112 IF32768 to 32767 113200,-6000 I
lint (32-bit) 114 11-2147483648 to 2147483647 IFIOOOOOO,345678 I
unsigned int DIO to 56635 lIoxooaa, 32769 I(16 bit)
unsigned int 010 to 4294967295 Il0xffea, 65535 I(32-bit)
IShort int 112 IF32768 to 32767 . 11234 I
unsigned short DIOt065535 IloxIe, 52000 Iint
Ilong int 114 IF2147483648 to 2147483647 Il0xaffaf, -64323 I
unsigned long 010 to 4294967295 11167556 Iint

rloat
10

3.4E-38 to 3.4E+38 and -3.4E-38 to- -15.443,22.35,
3.4E+38 2.45e+24

fouble D1.7E-308 to 1.7E+308 and-1.7E-308 -2.5e+ 100, -
to -1.7E+308 78.32544

Ilong double IE]3.4E-4932 to 1.1E+4932 and -1. IE- 8.5e-3000, -
4932 to -3.4E+4932 9.345e+234I

The data types in Table 1-1 include such keywords as short, long, and

unsigned, which are really type modifiers. For the sake of shortening type

names, however, some cf these type modifiers have become synonymous

with the fuller versions of the data type names. For example, the types

long, short, and unsigned are equivalent to long int, short int, and

unsigned int, respectively.

'J)':j1~;' w_.'

mt ._it 1t:1!IJb_H.ML~~!IiL=-!!!!£~,,*,"o&l""'!'~~'?:''''£I!?;;s;''':C>i''.f¥:~§,!~'''

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ~

1.5 The #include Directive

In order for a programming language to 'perform sophisticated tasks

(especially those required by operating systems, complex programs, and

mission-critical applications), the source code must be able to incorporate

special directives to the compiler. These directives guide and fme-tune

the actions of the compiler.

The first, and perhaps most widely used, compiler directive you'll come

across is #include. This directive instructs the compiler to read a source

code file and treat it as though you had typed its contents where the

directive appears. The general syntax for the #include directive is:

II form 1
#include <filename>

/I form 2
#include "filename"

The first identifier filename represents the name of the file to be included.

The two forms of #include vary in how they lead a program to conduct

searches for the include file. The first form searches for the file in the

special directory for include files. The second form expands the search to

incorporate the current directory.

Here are examples of using the #include directive:

#include <iostream.h>
#include "myarray.hpp"

The first example includes the header file IOSTREAM.H by searching

for it in the directory of include files. The second example includes the

header file MYARRAY.HPP by searching for it in the directory of

include files as well as in the current directory.

The #define directive defines macros. C++'-has inherited this directive

from C for the sake of software compatibility. The general syntax for the

#define directive is:

II form 1

#define identifierName

1/ form 2

#define identifierName litera/Value

II form 3

The first form of the #define directive is typically used to indicate that a

file has been read or to flag a certain software state. In this case, the

#define directive need not associate a value with the identifierName. The

main point for such use is to determine whether or not an identifier has

been defined. Here are examples of using the #define directive to defme

state-related identifiers:
#define _IOSTREAM_H_

#define_DEFnNES_~_

These examples define the identifiers IOSTREAM H and

_DEFINES_MIN¥JC_. The first example may indicate that the file

IOSTREAM.H haf, been read. The second example might, for example,

flag the compiler- to define or not define certain functions. Using

uppercase identifiers is a common convention and is not enforced by the

compiler. If so, the fact may be worth noting.

The second form of the #define c;lirectivedefines the names of constants

and associates literal values (numbers, characters, strings, and so on) with

these name. The preprocessor (which automatically runs before the

compiler) replaces the name of the.defined identifier with its associated

value .. Here are examples of using the #define directive to declare

constants:
#define MAX 100

#define ARRAY_SIZE 20
x

#define MINUTE_PER.-HOUR 60~

l·
These examples define the constants MAX, ARRAY_SIZE, and

MINUTE_PER_HOUR and associate the values 100, 20, and 60 with

these constants, respectively.

The third form of the #define directive defines pseudo-inline functions. In

this way, the directive can creal macros with arguments. The

preprocessor replaces the name of the defined identifier and its arguments

with the associated expression. Here are a few examples:

#define Square(x) ((x) * (x»

#define Reciprocal(x) (l/(x»

#define Lowercase(c) (char(tolower(c»

#define Uppercase(c) (char(tGupper(c»

These examples define the pseudO-i'1.....ne functions Square, Reciprocal,
Lowercase, and Uppercase. t

1;;

The #undef directive counteracts the #define directive by removing the

defmition of an identifier. The general syntax for the #undef directive is:
#undef identifierName

Here is an example of using the #undef directive:
~#define ARRAY SIZE 100

in! nArray[AfA....... Y_SIZE];
#undef~_SIZE

This code snippet performs the following tasks:

• Define the identifier ARRAY SIZE with the #define directive

• Use the identifier ARRAY SIZE to define the number of elements of

array nArray

• Undefine identifier ARRAY_SIZE using the #undef directive

You need not use the directive #undef to undefine an identifier before

redefining it with another #define directive. Simply use the second

#define directive to redefine an identifier. The following code snippet

demonstrates this idea:

II first definition of ARRAY_SIZE

#define ARRAY_SIZE 100

int nArrayl[ARRA V_SIZE];

#undef ARRAY_SIZE

II second definition of ARRAY_SIZE

#define ARRAY_SIZE 10

int nArray2[ARRA Y_SIZE];

These statements define, use, undefine, redefine, and then reuse the

identifier ARRAY_SIZE. The next code snippet, however, which lacks

the #undef directive, yields the same array declarations as the earlier one:

II first definition of ARRAY _SIZE

#define ARRAY_SIZE 100

int nArrayl[ARRAY_SIZE];

II second definition of ARRAY SIZE

#define ARRA Y_SIZE 10

int nArray2[ARRAY_SIZE];

1.8 Declaring Constants
c++ allows you to declare constants either using the #define directive or

using the formal constant syntax. The general syntax for declaring a

formal constant is:
const type constantName = constantValue;

The declaration of a constant resembles the declaration of an initialized

variable. Declaring a constant requires the keyword const. If you omit the

constant's type, the compiler uses the int data type.

Here are examples of constants:

const int MAX_NUM = 1000;

const int MIN_NUM = 1;

const SEC_PER_MINUTE = 60;

const char FIRST_DRIVE = 'A';

const double MIN_RATE = 0.023;

The first two examples declare the constants MAX NUM and

MIN_NUM and explicitly a~sociate the int type with these constants. By

contrast, the third example, which contains the declaration of constant

SEC_PER_MINUTE, has the int type by omission. The fourth and fifth

examples declare constants that have the types char and double"

respectively. Using uppercase with these constants IS a common

convention and is not enforced by the compiler.

Let's look at a simple example. Figure 1-3 shows the source code for the

program CONST1.CPP, which illustrates c++ constants. The program

declares a character constant and uses that constant to initialize a char-

type variable. The program also displays the values associated with the

constant and the variable. Here is the output of the program in Figure 1-3:

Character variable is?

Character constant is ?

--------_~___,______-----------c---~----

Figure 1-3 declares the char-type constant QUESTION_MARK. This

constant is associated with the question mark character. The listing also

declares the char-type variable cChar and initializes it using the constant

QUESTION_MARK. The program then displays the values in both the

constant QUESTION_MARK and the variable cChar.

mainO
{
const char QUESTION_MARK = '?';
char cChar = QUESTION_MARK;

cout« "Character variable is " «cChar« "\n"
«"Character constant is"« QUESTION_MARK« "\n";

return 0;
}

1.9 Arithmetic operators

Arithmetic operators support the manipulation of integers and floating-

point numbers. Table 1-2 shows the arithmetic operators in C++.

Table 1-2: The Arithmetic Operators in C++

lc++ OperalO11 Role IlData Typell Example I
I + Ilunary plus Inumerical Iz = +h - 2 I
I - !lunary minusiinumericalllz = -I * (z+ 1) I
I + lladd Inumerical Ih=34 + g I
I - IIsubtract Inumerical Iz = 3.4 - t I
I I Iidivide Inumerical Id=m/v I
I * IImultiply Inumerical larea = len * wd I
I % IImodulus IIintegers Ilcount = w % 121

Let's look at a program that applies the arithmetic operators to variables

having the integer and floating-point types. Figure 1-4 shows the source

code for the OPERl.CPP program, which illustrates the arithmetic

operators. The program performs the following tasks:

1. Prompt you to enter ~o nonzero integers

2. Apply the operators +, -, *, I, and % to your input

3. Display the integer operands and the results of the operations just

described

4. Prompt you to enter two nonzero floating-point numbers

5. Apply the operators +,., *, and 1 to your input

6. Display the floating-point operands and the results of the operations

just described

Here is the input and output of a sample session with the program in

Figure 1-4:

h Enter a nonzero integer: 341
·i:t

l

Enter another nonzero integer: 23

• 342 + 23 = 365

342 - 23 = 319

342 * 23 = 7866

,:~~:~:~:o
'Enter atnzero floating-pointrwnber: 4,56

Enter another nonzero floating"point number: 12.34

4.56 + 12.34 = 16.9

4.56 - 12.34 = -7.78

4.56 * 12.34 = 56.2704

4.56 /12.34 = 0.36953

--------------------------~-----

Figure 1-4 declares three sets of variables in'function main. The first set

comprises the int-type variables nNUml and nNum2. The second set of

variables is made up of the long-type variables IAdd, ISub, IMul, IDiv,

and IMod. The third set of variables includes the double-type variables

fX, tY, fAdd, fSub, fMuI, and IDiv.

The function main prompts you to enter two integers, which it then stores

in variables nNuml and nNum2. The function then uses the values in

these variables as the operands of the tested operators. It assigns the

results of the integer operations to the long-type variables. I chose to use

long-type variables (which have a wider range of values than int-type

variables) to store the results of the operations in order to fend off

possible arithmetic overflow, especially with the +, -, and * operators.
,

The function main then displays the integer operands and results.

As for applying the arithmetic operators to the floating-point numbers,

function main also prompts you to enter two numbers. The function

stores your input in variables fX and tY. It then uses the values in these

variables as the operands of the tested operators. It assigns the results· of

the floating-point operations to the double-type variables fAdd, fSub,

!Mul, and IDiv. The function main then displays the floating-point

operands and results.

C++ supports more complicated expreSSIOns that implement more

advanced mathematical equations. For example, you can write

expressions such as:

fZ = «(3 + 2 • fX) • fX - 5) • ~ - 3) * fX - 20;
tH = (2 + fX + fY). (34.2 - fX}1 (fX· fX + fY. fY);

ill = (11 + (22 + fX) • (56 - fY» I (tX * tX + fY • fY);

main()
{
int nNuml, nNum2;
long IAdd, ISub, IMul, IDiv, IMod;
double tx, fY;
double fAdd, fSub, fMul, fDiv;

II prompt for two integers
cout « "Enter a nonzero integer: ";
cin» nNuml;
cout « "Enter another nonzero integer: ";
dn » nNum2;
cout « "\n";

II apply arithmetic operators
lAdd ==nNuml + nNum2;
ISub ==nNuml - nNum2;
IMul ==nNuml * nNum2;
lDiv ==nNuml / nNum2;
IMod ==nNuml % nNum2;
II display operands and results
cout« nNuml «" +"« nNum2«" =="« lAdd« "\n";
cout «nNuml « " - " «nNum2 « " ==" « ISub « "\n";
cout « nNuml « " * " «nNum2 « " ==" «IMul « "\n'"

I '

cout« nNuml «" 1"« nNum2«" =="« lDiv« "\n";
cout« nNuml «" %"« nNum2«" =="« IMod« "\n";
cout« "\n";

II prompt for two floating-point numbers
cout « "Enter a nonzero floating-point number: ";
cin» fX;
cout « "Enter another nonzero floating-point number: ";
cin» fY;
cout « "\n";

II apply arithmetic operators
fAdd ==tx + fY;
fSub ==tx - fY;
fMul ==tx * fY;
fDiv ==fX I fY;
II display operands and results
cout « fX « " + " « fY « " ==" « fAdd « "\n";
cout « fX « " - " « fY « " ==" « fSub « "\n";
cout « fX « " * " « fY « " ==" « fMul « "\n";
cout« fX«" 1"« fY«" ==" «fDiv« "\n";

return 0;
}

a e . reee enee 0 ant mehe operatQrs.
IOperator(s)IIOperation(s) IIOrder of evaluation (precedence) I

DParentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses "on the same
level" (i.e., not nested), they are eval_uatedleft to right.

* , I ,or 0./0 Multiplication Evaluated second. If there are several, they are
Division evaluated left to right.
Modulus

1+ or- IAddition Evaluated last. If there are several, they are evaluated
Subtraction left to right.

1.10 Increment Operators
c++ offers the increment operators ++ and -- to support a shorthand

syntax for adding or subtracting 1 from the value in a variable,

respectively. The general syntax for the operator ++ is:
II form 1: pre increment

++variableName

II form 2: postincrement

variableName++

The preincrement versio~ of the operator ++ increments the value in its

operand variableName before that variable supplies its value to the host

expression. By contrast, the postincrement version increments the value

in its operand variableName after that variable supplies its value to the

host expression. If you use the increment operator in a sta~ement that has

no other operators (not even an assignment. operator), then it makes no

difference which form of the operator you use. Thus, these two

statements have the same effect:
nCount++;

++nCount;

Here are examples of using the increment operator:
int nCount = 1;

intnNum;

nNum = nCount++; II nNum stores 1 and nCount stores 2

nNum = ++nCount; II nNum stores 3 and nCount stores 3

In this code snippet the variable nCount has the initial value of 1. The

first statement that uses the incremen.t operator employs the

postincrement version. Consequently, the statement assigns the value in

variable nCount to variable nNum and then increments the value in

variable nCount. The result is that variable nNum stores 1 and variable

nCount contains 2. The second statement that uses the increment

operator employs the preincrement version. Consequently, the statement

fIrst increments the value in variable nCount and then assigns the value

in variable nCount to variable nNum. The -result is that both variables

nNum and nCount store 3.

As for the decrement operator, the general syntax for this operator is:

II form 1: pre-decrement
--variableName

II form 2: post-decrement
~ariableName--

The predecrement version of the operator -- decrements the value in its

operand variableName before that variable supplies its value to the host

expression. By contrast, the postdecrement version of the same operator

decrements the value in its operand after that variable supplies its value to

the host expression. If you us~ the decrement operator in a statement that

has no other operators (including the assignment operator), then it makes
•

no difference which form Jr the operator you use. Thus, the fo1l9wing

two statements have the same effect:

nCount--;
--nCount;

Here are examples of using the decrement operator:

int nCount = 10;
int nNum;
nNum = nCount--; II nNum stores 10 and nCount stores 9
nNum =--nCount; II nNum stores 8 and nCount stores 8

In this code snippet the variable nCount has the initial value of 10. The

first statement that uses the decrement operator employs the

postdecrement version. Consequently, the statement assigns the value in

variable nCount to variable nNum and then decrements the value in

variable nCount.The result is that variable nNum stores 10 and variable

nCount contains 9. The secqnd statement that uses the decrement

operator employs the predecrement version. Consequently, the statement

first decrements the value in variable nCou~t and then assigns the value

in variable nCount to variable nNum. The ·result is that both variables

nNum and nCount store 8.

I Expression II Evaluated As II Result

I j *j *j++. II 10*10*10 II 1000

I j * j++ * j II 10 * 10 * 10 II 1000

I j++ * j * j II 10 * 10 * 10 II, 1000

I j *j * ++j . II 10*10*11 II 1100 I
I j*++j*j II 11*11*11 II 1331 I
I ++j * j * j II 11*11*11 II 1331 I

1.11 Assignment Operators
If you have programmed in BASIC, Pascal, or another structured

programming languages, then you have probably written expressions

such as these:

diff = diff - x;

scale = scale / factor;

factorial = factorial * x;

Each statement contains the same variable on both sides of the

assignment operator. C++ supports assignment operators that combine

arithmetic and bitwise operations with the assignment operator. Thus you

can write the preceding statements as:

sum +=x;

diff·= x;

scale /= factor;

factorial *= x;

Table 1-4 lists the arithmetic assignment operators in c++. The table also

contains examples of using these operators, in addition to the long-form

versions of the statements in the examples.

C++ operato11Exampie 11Long~FormExample

+= IlfSum += fX; IlfSum= fSum + fX;

- IItY-= fX; IItY= tY - fX;

1= IlnCount 1=N; Ilncount = nCount IN;

*= IIfSet *= fFeator; IIfSet= fSct * fFactor;

%= IlnBins %= ncount;llnBins = nBins % ncount,1

1.12 Typecasting
c++ supports the typecastit:lg feature (inherited from C) to allow you to

explicitly convert a value from one data type into another type. The

general syntax for typecasting is:

/1 form 1

(new Type)expression

II form 2

new Type (expression)

Here are examples of using the typecasting feature:

char cLetter = 'A'
int nASCII = int(cLetter);
long IASCII = (long)eLetter;

This code snippet declares and initializes the char-type variable cLetter.

The code also declares the int-type variable nASCII and initializes it

using the int typecast of variable cLetter. In addition, the code declares

the long-type variable JAsen and initializes it using the long typecast of

variable cLetter. .-

static cast
Cast operators are available for any data type. The static_cast operator is

formed by following keyword static_cast with angle brackets « and »

around a data type name. The cast operator is a unary operator, i.e., an

operator that takes only one operand. Here's a statement that uses a C++

cast to change a variable of type int into a variable of type char:

Here the variable to be cast (anlntVar) is placed in parentheses and the

type it's to be changed to (char) is placed in angle brackets. The result is

that anlntVar is changed to type char before it's assigned to aCharVar.

Questions

(SAMS- Object-Oriented Programming in C++ Book-chapter 2)

2,3,4,5,6,9,10,11,12,14,15,17,18,19,20,21,22,23.
2. A function name must be followed by _

3. A function body is delimited by _

4. Why is the mainO function special?

5. A C-H- instruction that tells the computer to do something is called a _

6. Write an example of a normal C-H- comment and an example of an old-fashioned /*
\

comment.

9. True or false: A variable of type char can hold the value 301.

10. What kind of program elements are the following?

a. 12

c.4.28915

d. JungleJim

e. JungleJimO

11. Write statements that display on the screen

a. the character 'x'

b. the namejim

c. the number 509

12. True or false: In an assignment statement, the value on the left ofthe equal sign is

always equal to the value on the right.

14. What header file must you #include with your source file to use cout and cin?

15. Write a statement that gets a numerical value from the keyboard and places it in

the variable temp.

17. Two exceptions to the rule that the compiler ignores whitespace are and

18. True or false: It's perfectly all right to use variables of different data types in the

same arithmetic expression.

19. The expression 11%3 evaluates to _

20. An arithmetic assignment operator combines the effect of what two operators?

21. Write a statement that uses an arithmetic assignment operator to increase the value

of the variable temp by 23. Write. the same statement without the arithmetic

assignment operator.

22. The increment operator increases the value of a variable by how much?

23. Assuming vael starts with the value 20, what will the following code fragment

print out?

cout« varl--;

cout« -H-varl;

1. Write a single C-H-statement or line that accomplishes each of the following:

a) Print the message "Enter two numbers".

b) Assign the product of variables band c to variable a.

c) State that a program performs a sample payroll calculation (Le., use text

thJt helps to do<;umenta program).
}

d) Input three integer values from the keyboard and into integer variables a, b

andc.

a) C-H-operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar_, m928134, t5,

j7, her_sales, his_account_total, a, b, c, z, z2.

c) The statement cout « "a = 5;"; is a typical example of an assignment

statement.

d) A valid C-H-arithmetic expression with no parentheses is evaluated from

left to right.

e) The following are all invalid variable names: 3g, 87, 67b2, h22, 2b.

3. Fill in the blanks in each of the following:

a) What arithmetic operations are on the same level of precedence as

multiplication? _

b) When parentheses are nested, which set of parentheses is evaluated first in

an arithmetic expression? _

c) A location in the computer's memory that may contain different values at

various times throughout the execution of a program is called

4. What, if anything, prints when each of the following C++ statements is performed?

If nothing prints, then answer "nothing." Assume x = 2 and y = 3.

a) cout« x;

b) cout«x+x;

c) cout« "x=";

d) cout« "x = " « x;

e) cout« x + y « " = " «y + x;

f) z = x + y;

g) cin» x » y;

h) II cout « "x + y = " « x + y;

i) cout« "\n";

5. Which of the following C++ statements contain variables whose values are

replaced?

a) cin» b » c » d » e » f;

b) P = i + j + k + 7;

c) cout« "variables whose values are replaced";

d) cout« "a = 5";

6. Given the algebraic equation y = ax3 + 7, which of the following, ifany, are correct

C++ statements for this equation?

a) y = a • x • x • x + 7;

b) y = a • x • x • (x + 7);

c) y = (a • x) • x • (x + 7);

d) y = (a • x) • x * x + 7;

e) y = a • (x • x * x) + 7;

f) Y= a • x • (x * x + 7);

,Exercises' SoJuti()DS
Subject: CSS03

of Lecture No. (1)
••••••••••••• ,•• ,a a<••

SAMS Object-oriented Programming in C++ Book Chapter2)

2- A function name must be followed by Parentheses:
3- A function body is delimited by braces n,

,X4- Why is main 0 function special?
Answer: Because it is the first function executed when the program starts.
5- A C++ instruction that tell's the computer to do something is called a statement.
6- Write an example of a normal C++ comment and an example of an old-fashioned
1* comment.
Answer: 1/ This program ~lculates the Area and Circumference of a Circle.

/* This program calculates the Area and Circumference ofa Circle*l.

@j'"~ 9- True or false: A variable of type char can hold the value 301. (False), it bolds
-,.. f om ·128 to 127. .

10- What kind of-program elements are the following?
a- 12 (Integer)
b- 'a' (Cbaracter Constant)
c- 4.28915 (Floating-point Constant)
d- JungleJim (Variable Name)

11- Write statements that display on the screen
a- The character 'x' (cout«'x' ;)
b- The'namejim (cout<<"jim" ;)
c- The number 509 (cout<<509 ..il- z=

12- True or false: in. an assignment statement, the value on the left of the egual sign is
~Iways egual to the ~alue on the right. (False) they're not equal until the statement is
executed. '
14- Whafheader tHe mU:.t you #include with your source file to use cout and dn?
«iostream.h» .
15- Write a statement that gets a numerical value from the keyboard and places i9t in
the variable temp. (dn»temp;).p ~" ""17- Two exceptions to rule that the compiler ignores whltejpaces are string constants

• . and preprosessor directives •
..e.-·18- True or false: It's perfectly al~ right to use variables of different data types in the

same arithmetic expression. (True)
0.9- The expression II %3 evaluates to 2.

? A:::- 20- An arithmetic assignment operator combines the effect of what two operators?
'" The assignment operator (=) and arithmetic (like+3nd*).

~Wri~e a stat~ment that uses an ari.thmetic assignment ope~ator to incre~e th:
value ot the variable temp by -'J...Write the same statem-ent Without the arithmetiC
assignment operator. (temp+=23 ;), (temp=temp+23 ;)
22- The increment operator increases the value ofa variable by how much? (1).

~- Assu'ming varr starts with the value 20, what will the following code fragment- print out?' .._ .._~- ', ..- , ---- _-, .. ,.... ..

coul« varl--;
cout«++varl; (20:!0)

PDFcreated with pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

Ex. No. 1 (Page # 25)
I-write a single C++ statement or line ~omplishes each of the following:

1.-. a) Print the message "Enter two Numbers."
Answer: cout«"Enter two Number.";

b) Assign the product 0 f variables b and c to variable a.
~Answer: a=b*c;

c) State that a program performs a sample payroll calculation (Le., use text that helps
to document a program).
Answer;./I Sample Payroll Calculation

d) Input three integers values from the keyboard and into integer variables a..b and c.
Answer:
int a, b, c;
cout« "Enter lnteger Values:"
cin»a»b»c;

2- State which of the following are true and which are false. If false, explain your
answer. '~ ,..

Eo; a) C++ operators are evaluate from left to right ~ / ~,,\
Answer: (False) they're va from left to right, in case of $lY!LP.riority.

<::: "1» The following are all valid names: _under_bar_, m92~tS, j7, her_sales.
his_account_total, a, b, c, z. z2,
Answer: (True)

.~ The statement cout«:a=5;"; is typical example of an assignment statement.
: . " Answer: (False) this statement will be printed only as it is and not an

assignment statement. () ,
.. -----4) A valid C++ arithmetic expression with no parentheses is evaluated from left
e:-- to right.
. Answer: (Tnle). ~

.----e) The following are all invalid variable names: 380 87, 67h2, 2h.
~ Answer: (False) h22 is the.,only valid variable name and the ot ers are not

valid ..
3- Fill in the blank in each of the following:

~ what arithmetic operations are on the same of level precedence as mUltiplications?
Division.
b) When parentheses the innermost parentheses.
c) A location in the computer's memory ofa program is calkd a varillble (s).

4- what if anything prints when each of the following C++ statements are performed?
lfnothing prints. then answer "nothing" Assume x=:2and y=3.

-------- --_-Answer:_._., __.-:-__...._-_
a) Cout«x;
b) Cout«x+x;'\. "'--
c) Cout«"x="; '"'-
p) Cout«"x="«;..::
e) Cout«x+y«"="«y+x;

x=
x="'

5+5

pOt;oNatedWitft9d!Faetory PrO trlaiwersion www..pdffactory.com

http://www..pdffactory.com

I

If
II
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Ii
I
I
I
I
I
I
I
I
I I

PDF created with pdfFactory Pro trial version YJWW.Ddffamsux.qrn

;,~ •..
[?
~

t) Z=x+y;
g) Cin»x»y;
h) Ilcout«"x+y="«x+y;
i) Cout< <'\0";

5 (2+3)
Nothiog (Input command)
Nothiog (comment command)
Nothing (New Line)

5- Which of the following C++ statements contain variables whose values are
replaced? "

a) Cin»b»C»d»e»~ \l ~ ~
b) P=i+j+k+ 7; 'j ~7 '"

c) Cout«"Variables whose values are replaced"; ~ (il}-;J
d) Cout«"a=S"; \I... \v~)"'Y .

6- Given the algebraic equation y=ax3+7, which of the following if any are correct
C++ statements for this equation?

a) Y=a*x*x*x+7;
b) Y=a*x*x*(x+7);
c) Y=(a*y)*x*(x+7);
d) Y=(a*x)*x*x+7;~
e) Y=a*(x*x*x)+~
f) Y=a*x*(x*x+7);

7- State the order of evaluation of the operators in each of the following C++
statements and show the 'tlaIueof x after each statement is performed.

a) 7+ *~-l;
.3,

b) , ..". * 2-2/2-
J ~

~ CD'

c) * 9 *(3+(*

Ex. No 8 (Page # 27)
II This program calculates the Sum, Product, Difference and Quotient of Two
Gjyen Numbers (

include <iostream.h>
int mainO

@at x,y,s,p,d,Qi \ -
cout«"Enter First Number:\n";
cin»x;
cout«"Enter Second Number:\n";
cin»y;
s=x+y;
cout«"The Sum of X+Y ="<<s;
cout«"\n";
p=x*y;
cout«"The Product ofX*Y ="«p;
cout«''\n";
d=x-y;
cout«"The Difference ofX-Y ="<<d;
cout«"\n";
q=xty;
cout«"The Quotient ofXIY =i'<<q;

* *
* * •
* * * *.* ...

"3e:.:
~ fi

~Z:'::;'
ft;j

-'.
~fa;:..:~
::;;J

~

.~.~'.
~

m
~

~
~

®
'::Ei=J

f~~H
".!

..~
:~J
-:j

return 0;
}

/ ~Ex. No. 11 Page # 27
Y -What does the following code print?

cout«"*\n* *\n***\o*" *\n**" *\n";
Output

Ex.No.lO Page # 27
Write a program that reads in radius of a drcle and prints the circle's diameter,
circumference and area. Use the constant value 3.14159 for 1t.Do these calculations in

---- ~ Qutputstatements.----. _.
Formulas: Area = 1tr1,Circumference = 1tr

II Program to Calculate the I\rr.~aand Circul11f~renceof a Cin:k (Ex. 10 Page # 27)
#include <iostream.h>
int mainO

-: ~.;:: ~. . "

~L:;, ~., - '"'';:;~:, -;J!~'. :' ,.' ", ~ 1 <i~:",\,W~iii;...\;.'~;-~, . 'f': ,.' ~.;:...."... 0 t~':~:';:;¢r'!~ 0 '\. ;~. :;.:~y......1'~.. '," <;;"~'::i

,..' .
••

{
float r,
float a;
float c;

const float pi=3.14159;
cout«"Enter Radius:";
cin»r;
a=pi*r*r;
cout«"\n";
cout«"Circle Area is:"<<a;
cout«"\n";
cout«"Enter Circumference:";
c=pi*r;
cout«"Circle Circumference is:"<<c;
return 0;

Examples Page 18
Sta te the order of evaluation of the operaton in each of the following C++
statements and show the value ofx after each statement is performed.

A) X=2*(1+3)+3/(5-4);
B) X=(3*9*(3+(9*3/(3»»;

If a=2, b=3, c=l, d=4, e=5, write a single C++ statement for each of the following
expressions. State the order of evaluation & show the value of x after each
statement is performed.

1- x= 2a+2b
3c

Sc+2+b
2- x=---

a+b
2d c+e3- x=-+--
a b

10-j 1..

a) x=[~t;t)+3/(t4);

b) X=(3 *9*(3+(9*3/(3))));

l-X= (2*a+2*b)/(3*c);

,~~ ~? ,#" <; , ' ..:;.~_;,: ,;"* ,;K1+'"'; ~.::.. ".~, ~ ~ "" • - ',' • '. ' "t.: ~ '/", ':'':. --,:¥: ,;;'~'.",,~':;::'- '. i: '._. " _ .' ,;. . " ;"'....•(~
- •• .,. ~# .-

Lecture 2
Decision Making

2.1 Relational and Logical Operators

Programs require relational and Boolean operators to create decision-

making Boolean expressions. Table 2-1 shows the relational and Boolean

operators in c++. Also notice that Table 2-1 contains the conditional

assignment operator ?:. It has the following syntax:

(expression) ? true Value :false Value

The operator yields the true Value if the expression is true (or nonzero)

and returns the falseValue otherwise. Consider how this statement uses

the conditional assignment operator to assign a value to a variable:

variable = (expression)? true Value :falseValue;

~ hl 21Th R l' I dB [, Q • Ca e - . e e atlOna an 00 ean 'Derators In ++
Ic++ OperatodWeaning IlExample I
/&& Illogical AND Ilk> 1 && k < 11 I
~I Illogical OR Ilk <01/ k> 22 I
I! Illogical NOT 11!(k> 1 && k < 10)1
1< IILess than Ilk < 12 I
1<= IILess,than or equal to Ilk <= 33 I
I> Ilgreater than Ilk>45 I
1>= Ilgreater than or equal tollk >= 77 I
1= lIequal to Ilk= 32 I
I!= Iinot equal to Ilk !=33 I
I?: IIcondit.ional assignmentllk = (k < O)? 1 : k I

&& T F

T T F

F F F

II T F

T T T

F T F

~

CII2J

Example:

41 < 65 is TRUE

41 <= 29 is FALSE

65 > 29 is TRUE

41 = 65 is FALSE

41 != 29 is TRUE

41 < 65 && 65 < 29 is FALSE

41 < 651165 < 29 is TRUE

!(41 <= 65) is FALSE

(0) is FALSE

(45) is TRUE

!(14%7) && !(10%7) is FALSE

2.2 The Simple if Statement
e++ offers the simple if statement to support single-alternative decision

making. The general syntax for the simple if statement is:

II form 1

if (condition)

II form 2

if (condition) {

I I sequence of statement

}

The if statement uses the keyword if followed by the parentheses that

contain the tested condition. If that condition is true, the program

executes the statement (see form 1) or the block of statements (see form

2) that come after the tested condition. Otherwise, the program bypasses

this statement (or block of statements).

Here are examples of the single-alternative if statement:

II example 1

if (nNum <0)

II example 2

if (i > 0 && i < 100)

cout« "Number is in range 1 to 100\n";

II example 3

if (nCount< 1)

nCount= 1;

The fIrst example uses the if statement to display a message if the value

in variable nNum is negative. The second example employs the

if statement to display a message when the variable icontains an integer

in the range of I to 99. The third example assigns 1 to variable nCount if

that variable contains a value that is less than 1.

Example:

Figure 2.1 shows an example for using if statement to specify if the

entered number is greater than 100.

II demonstrates IF statement
#include <iostream>
using namespace std;
int mainO
{

int x;
cout« "Enter a number: ";
cin» x;
if(x > 100)

cout « "That number is greater than I00\n";
return 0;

Here's an example of the program's output when the number entered by

the user is greater than 100:
Enter a number: 2000

That number is greater than 100

If the number entered is not greater than 100, the program wilLterminate

without printing the second line.

2.3 The if-else Statement
e++ enables the if statement to support dual-alternative decision making.

The general syntax for the dual-alternative if statement is:
if (condition)

II statement or block of statements

else

II statement or block of statements

The dual-alternative if statement uses the keyword else to separate the

two sets of statements that offer the alternative actions. If the tested

condition is true, the program executes the statement or statement block

that comes after the tested condition. Otherwise, program execution

resumes after the keyword else and executes the subsequent statement or

statement block.

Here are examples of the dual-alternative if statement:
II example 1

if (nNum < 0)

cout« "Value is negative\n";

else

cout« "Value is 0 or greater\n"

II example 2

if (i > 0 && i < 100)

j = i * i;

else

j = 100;

II example 3

if (nCount < 1)

nCount= 1

else

nCount--;

The fIrst example uses the if statement to determine whether or not the

value in variable nNum is negative. If this condition is true, the

. if statement display the message "Value is negative." Otherwise, the

if statement executes the statement in the else clause to display the

message "Value is 0 or greater."

The second example employs the if statement to determine if the variable

icontains an integer in the range of 1 to 99. If this condition is true, the

statement assigns the expression i * i to the variable j. Otherwise, the

if statement executes the else clause statement to assign 100 to the

variable j.

The third example uses the if statement to determine whether or not the

value in variable nCount is less than 1. If this condition is true, the

if statement assigns 1 to variable nCount. Otherwise, the if statement

executes the else clause statement to decrement the value in variable

nCount.

Example:

Here's a variation of our IF example, with an else added to the if:

II demonstrates IF ...ELSE statememt
#include <iostream>
using namespace std;
int mainO
{

int x;
cout « "\nEnter a number: ";
cin» x;
if(x > 100)

cout « "That number is greater than 100\n";
else

cout « "That number is not greater than 100\n";
return 0;

2.4 The Multiple-Alternative if Statement

e++ also permits the if statement to support multiple-alternative decision

making. The general syntax for the multiple-alternative if statement is:
if (conditionl)

II statement # 1 or block of statements # 1

else if (conditioi'i2)

II statement #2 or block of statements #2

else if (condition3)

II statement #3 or block of statements #3

II other else ifclauses

else

II catch-all statement or catch-all block of statements

The multiple-alternative if statement allows a routine to test a battery of

conditions and take one of multiple courses of action. The if statement

tests the Boolean expressions conditionl, condition2, condition3, and so

on in that sequence. The first condition that is true causes the runtime

system to execute its associated statements. Program execution resumes

after the end of the if statement. If none of the tested conditions are true,

the program executes the statements in the catch-all else clause (if one is

used).

Here is an example of a multiple-alternative if statement:
if (N >= 0 && N < 10)

cout« "Variable N is a single digit\n";

else if(N >= 10 && N < 100)

cout« "Variable N has two digits\n";

else if(N >= 100 && N < 1000)

cout « "Variable N has three digits\n";

else if (N >= 1000)

cout« "Variable N has four or more digits\n";

else

cout« "Variable N is negative\n";

This code snippet classifies the value in variable N as follows:
- " ,,- .,....'.- '..•.~ - ,.... ,; ',-,"" ~..-.- .

• The condition of the if clause determines whether or not the variable

N contains an integer in the range of 0 to 9.

• The first else if clause determines whether or not the variable

N contains an integer in the range oflO to 99..

• The second else if clause determines whether or not the variable

N contains an integer in the range of 100 to 999.

• The third else if clause determines whether or not the variable

N contains an integer equal to or greater than 1000.

Each of the if and else if clauses display a message reflecting the value in

variable N. The catch-all else clause displays the message that the

variable N contains a negative value.

Example:

Write a c++ program that accepts grade for a student then determines his

graduation grade according to the incoming table:
Criteria g>=90 90>g>=80 80>g>=70 70>g>=60 60>g

Income level Excellent Very good good pass Fail

Interaction with the program might look like this:
Enter a grade: 85

Graduation grade: very good

#include <iostream.h>
int main()
{ int grade"

cout«"Enter grade"" .
cin»gradep ,
if(grade >=90)

cout«"\n Excellent"«endl;
else if (grade>=80) ,

cout«"\n Very good"«endl;
else if (grade>=70) ,

cout«"\n good"«endl.
else if (grade>=60) •

cout«"\n pass"<<endlt
.

cout«"\n Fail"<<endl~.
return 0;

2.5 The switch Statement
c++ offers the switch statement to support multiple-alternative decision

making. The general syntax for the multiple-alternative switch statement

svvitcl1(e."J)ressioIl)

{

case constantExpression]:

II statemellt set # 1

break;

case constantExpression2:

II statemellt set #2

break;

[default:

II catcl1-all statemeIlts]

}

The switch statement examines the value of the expression, which must

be integer or integer-compatible (as are characters and enumerated types).

The condition of the switch can be a variable, a function call, or an

expression that includes constants, variables, and function calls.

The switch statement uses case labels for comparing the tested

expression with different values. c++ has the following rules about the

case labels:

• The keyword case is followed by a single constant (either a literal

constant or a constant expression), followed in turn by a colon.

• You can include a sequence of more than one case label; all such

labels end up executing the first sequence of statements that follows.

• A case label cannot list a range of constant values. Each case label

lists only one constant.

Program execution sequentially examines the values in the case labels. If

a case label value matches the tested expression, the. program executes

the statements that come after the case label.

Example:

Write a program that asks the user to enter the item number and prints the

price of this item according to the following table.

ltemNo 1 2 3 4

Price 100 200 600 150

#incJude <iostream.h>
int mainO
{

int ItemNo;
cout«nEnter the item no. : n;
cin»ItemNo ;
switch(ItemNo)
{

cout«n\n the price is 1OOn«endJ;
break;

case 2:
cout«n\n the price is 200n<<endl;

break;
case 3:

cout«n\n the price is 600n<<endl;
break;

case 4:
cout«n\n the price is 150n<<endl;

break;
default:

cout«n\n the item no. not foundn<<endl;
}

return 0;
}

1. Wtlle a·prograllfthataskS the uset'to enter two integers. obtains the numbers from

the user. then prints the larger number followed by the words "is larger." If the

numbers are equal. print the message "These numbers are equal."

2. Write a program that inputs three integers from the keyboard and prints the sum.

average. product, smallest and largest of these numbers. The screen dialogue

should appear as follows:

Input three different integers: 13 27 14

Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

3. Write a program that reads in five integers and determines and prints the largest and

the smallest integers in the group. Use only the programming techniques you

learned in this lecture.

4. Write a program that reads an integer and determines and prints whether it is odd or

even. (Hint: Use the modulus operator. An even number is a multiple of two. Any

multiple of two leaves a remainder of zero when divided by 2.)

5. Write a program that reads in two integers and determines and prints if the first is a

multiple of the second. (Hint: Use the modulus operator.)

6. Write a program that inputs a five-digit number. separates the number into its

individual digits and prints the digits separated from one another by three spaces

each. (Hint: Use the integer division and modulus operators.) For example. if the

user types in 42339 the program should print:

7. Write an algorithm and a c++ program that accepts an employee salary and a tax

percentage then computes the monthly net salary and determine his income level

according to the incoming table:

Criteria ns> =5000 50000>ns>=2000 ns<2000

Income lev~l l1i.gh moderate low
, c ~~ ••. 0:-"" - ..

Lecture 3
Loops

3.1 The for Loop

The general syntax for the for loop is:
for (initiUzationPar.t; iterationConditionPart, incrementPart);

The for loop contains the following three parts:

1. The initialization part, which initializes the loop control variable(s).

You can use single or multiple loop control variables.
.•.

2. The iteration part, which contains a Boolean expression that causes the

loop to iterate as long as the expression is true

3. The increment part, which increments or decrements the loop control,
variable(s)

Here are examples of the for loop:
II example 1

~ for (i = 0; i < 10; i++)

II example 2

"'" for (i = 9; i >= 0; i -= 3)

II example 3

'-....J for (int i = I; i < 100; i++)

II example 4 C'0W ~o., ..J.. ~ \ (J

'" for (int i = 0, j = MAX; i<j; i++,j--)

cout« (i + 2 * j) « "\n";

, The first example initializes the loop control variable i to 0 and iterates as

long as the value in variable i is less than 10. The loop increment part

increases the value of variable iby 1. Thus the upward-counting loop

iterates 10 times with the value in variable ichanging from 0 to 9.

The second example shows a downward-counting loop that initializes the

loop control variable i to 9. The loop iterates as l~ng as the value in

variable i is not negative. The loop increment part decreases the value of

variable iby 3. Thus the loop iterates four times with the value in variable

ihaving the sequence 9, 6, 3, and O.

The third example shows an interesting C++ feature that is related to the

for loop: This example declares the loop control variable iand also

initializes it to 1. The loop iterates as long as the value in variable i is less

than 100. The loop increment part increases the value of variable iby 1.

Thus, the upward-counting loop iterates 99 times with the value in

variable i changing from 1 to 99.

The fourth example shows that a C++ for loop can declare and initialize /

multiple loop control variables. The loop initializes the variables iand

j to 0 and MAX, respectively. Thle loop iterates as long as the value in

variable i is less than that in variable j. The loop increment part increases

the value in each of the variables iand j by 1.

Example:

The following program calculates and prints the sum of the even integers

from 4 to 20.
, #include <iostream.h>

int mainO

for (int i=4;i<=20;i=i+2)

surn+=i;

cout «sum<<endl;

return 0;

~ 3.2 The Open-Iteration for Loop

c++ allows any or all three parts of a for loop to be empty! For example,

you can initialize a loop control variable before the loop's statement. You

can also increment the loop control variable inside the loop's statements.

What happens when a for loop has all three parts empty? The answer is

that you get an open-iteration loop. The source code needs to initialize,

increment, and test the loop iteration outside the three parts of the

for loop. Here IS a code snippet that illustrates the open-iteration

for loop's features:
int i = 0; II initialize variable

intj;

for (;;) {

I I test loop condition and exit if i >= 1.
if(i >= 10)

break;

j = i+ i * i-5;

i++; II increment loop control variable

cout «j «"\n";

}

This snippet initializes the variable i and uses that variable to control the

iterations of the for loop. The loop displays the value in variable iand

then tests the loop's condition. If the value in variable i is equal to or

greater than 10, the loop exits using the break statement. The loop then

calculates the value for variable j, increments variable i, and displays the

value in variable j. The statement i++; increments the loop

variable and allows iteration to progress.

~1.
\\"'I q

'treJ<'cI
control

3.3 The do-while Loop

The do-while loop iterates as long as a tested condition is true. The

. syntax for the do-while loop is:

do {

II statements

} while (condition);

The syntax of the do-while loop shows that it tests the iteration condition

after executing the loop's statement. Thus, the do-while loop always

executes at least once. Here is an example of the do-while loop:

do

cout« "Enter a positive integer: ";

cin»nNum;

while (nNum < 1);

This example shows a do-while loop that iterates as long as the value in

the variable nNum is less than 1.

Example:

The following program calculates and prints the sum of the even integers

from 4 to 20.

#include <iostream.h>

int mainO

int sum=O;

int i=4;

}while(i<=20);

cout «sum<<endl;

return 0;

3.4 The while Loop
The syntax for the while loop is:

while (condition)

// statement or statement block

The syntax of the while loop shows that it tests the iteration condition

before executing the loop's statement. Thus, the while loop will not

execute if the tested condition is already false. Here is an example of the

while loop:
int i = 0;

while (i * i < 1000)

i++;

This example has a while loop that iterates as long as the squared value of

variable i is less than 1000.

Example:

The following program finds and prints the smallest integer that is

able to divide by 12 and 14
#include <iostream.h>

int mainO

{

int i=l;

while(i%12!=O 1/ i%14!=0)

cout «i«endl;

return 0;

3.5 Exiting Loops
The break statement exits the current loop. Thus to exit nested loops

(more about these loops later in this chapter), you need to use a

break statement for each loop.

Here are examples of using the break statement with the do-while and

while loops:
II exit from do-while loop example

double fY, fX = 1.0;

do {

fY=fX*fX+I0;

if (fY > 10000.0)

break;

cout« "f(" «fX « ") = " «fY « "\n";

II exit from while loop example

double fY, fX = 1.0;

while (fX > 0.0 && fX < 100.0) {

fY = fX * fX - 30;

if (fY > 1000.0)

break;

};
The fIrst example has a do-while loop that iterates as long as the value in

variable fX is less than 100. The loop contains a statement that

determines whether or not the value in the variable fY (which is based on

the value of variable fX) exceeds 10,000. If this condition is true, the loop

exits by executing the break statement in the if statement.

The second example has a while loop that iterates as long as the value in

variable fX is positive and less than 100. The loop contains an

if statement that determines whether or not the value in the variable

fY (which is based on the value of variable tx) exceeds 1000. If this

condition is true, the loop exits by executing the break statement in the

if statement.

3.6 Skipping Loop Iterations

c++ offers the continue statement to skip the remaining statements in a

loop. Why skip the remaining loop statements? This condition arises

when the loop statements examine a condition and conclude that the loop

should not or need not proceed with executing the remaining statements.

Here is an example of using the continue statement:

for (int i = -4; i < 5; i++) {

if(i = 0)

continue;

double fX = 1.0/ i;

}

This code snippet shows a loop that displays reciprocal values. The loop

has a control variable that changes values from --4 to 4, in increments of

1. The loop contains an if statement that determines whether or not the

control variable contains o. When this condition is true, the loop skips the

remaining statements to avoid dividing by zero!

3.7 Nested Loops

c++ allows you to nest loops in any combination. For example, you can

nest for loops, as shown in the following code snippet:

double fSum = 0;

for (int i = 10; i < 100; i++)

for (int j = 0; j < i; j++)

fSum += doubleG * i);

This code snippet shows two nested for loops used to obtain a

summation.

You can also nest different kinds of loops. Here is a code snippet that

shows you nested while and do-while loops:
double fSum = 0;

inti=IO;

intj;

while (i < 100)

{

j =0;

do {

fSum += doubleG++ * i);

} while G < i);

}

The nested loops obtain a summation, like the one in the example of the

nested for loops.

Example: The following program uses two nested loops to draw the

following shape

*

#include<iostream.h>
int mainO
{

for (int LineNumber=-9;LineNumber<=9;LineNumber=LineNumber+2){ .

int LineNumberTemp;
if(LineNumber<O)

for (int i=l;i<=LineNumberTemp;i++)
cout<<'*';
cout<<endl;

}
return 0;

1. Identify and correct the error(s) in each of the following:

a) if(age >= 65);

cout« "Age is greater than or equal to 65" «endl;

else

cout « "Age is less than 65 « endl";

b) if(age >= 65)

cout « "Age is greater than or equal to 65" « endl;

else;

cout « "Age is less than 65 « endl";

c) int x = 1, total;

while (x <= 10) {

total += x;

d) While (x <= 100)

total += x;

e) while (y > 0) {

cout « y « endl;

++y;

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19) }

using std::cout;
using std::endl;

int mainO
{

while (x <= 10) {
y=x * x;
cout« y« endl;
total += y;
++x;

}

cout « "Total is " « total « endl;
return 0;

3. Write a c++ program that utilizes looping and the tab escape sequence \t to print
the following table of values:

N 10*N
1 10
2 20
3 30
4 40
5 50

100*N
100
200
300
400
500

1000*N
1000
2000
3000
4000
5000

1) #include <iostream>
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

using std::cout;
using std::endl;

int mainO
{

int count = I;

while (count <= 10){
cout « (count % 2 ? "****": "I I I I I 1++")

« endl;
++count;

}

15)
16) return 0;
17) }

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23) }

using std::cout;
using std::endl;

irit mainO
{

while (row>= 1) {
column = 1;

while (column <= 10) {
cout« (row %2 ? n<n : n>n);
++column;

}

--row;
cout « endl;

}

6. Determine the output for each of the following when x is 9 and y is 11 and when x

is 11 and y is 9.

a) if(x< 10)

if(y>lO)

cout « n#####n « endl;

cout « n$$$$$n « endl;

b).if(--x<.IO) {

if(y > 10)

}

else {

cout « n#####n « endl;

cout « n$$$$$n « endl;

7. Modify the following code to produce the output shown. Use proper indentation

techniques. You must not make any changes other than inserting braces. Note: It is

possible that no modification is necessary.

if(y = 8)

if(x= 5)

coot « "@@@@@"« endl;

else
cout « ,,#####n «end!;

cout « n$$$$$n « end!;

cout« ,,&&&&&n«end!;

a) Assuming x = 5 and y = 8 , the following output is produced.

@@@@@
$$$$$

&&&&&

@@@@@
&&&&&

d) Assuming x = 5 and y = 7 , the following output is produced. Note: The last three

output statements after the else are all part of a compound statement.

#####

$$$$$

&&&&&

8. Write a program that reads in the size of the side of a square and then prints a

hollow square of that size out of asterisks and blanks. Your program should work for

squares of all side sizes between 1 and 20. For example, if your program reads a size

of 5, it should print

Your program must use only three output statements, one of each of the

following forms:

cout t" *"»
cout t' '»

10. Write a program that reads three nonzero double values and determines and prints

if they could represent the sides of a triangle .

11. Write a program that reads three nonzero integers and determines and prints if

they could be the sides of a right triangle.

12. Find the error(s) in each of the following:

a) For(x=IOO,x>=I,x++)

cout « x « endl;

switch (value % 2)

case 0:

cout « "Even integer" « endl;

case I:

for(x= 19;x>= l;x+=2)

cout « x « endl;

cout « counter « endl;

counter += 2; }

While (counter < 100);

13. Write a program that finds the smallest of several integers. Assume that the first

value read specifies the number of values remaining and that the first number is not

one of the integers to compare.

14 Write a program that calculates and prints the product of the odd integers from I.•
to 15.

-----..----------..---------------_._-~~
("

15. Write a program that prints the following patterns separately one below the other.

Use for loops to generate the patterns. All asterisks (*) should be printed by a single

statement ofthe form cout« '*';

(A) (B) (e) (D)

* ********** ********** *** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
'ft **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

16. Assume i = 1,j = 2, k = 3 and m = 2. What does each of the following statements

print? Are the parentheses necessary in each case?

a) cout« (i = 1) « endl;

Lecture 4

User-Defined Data Types

4.1 Enumerated Types
Enumerated data types allow you to defme a set of identifiers that have

integer values associated with them. The associated values can be implicit

(that is, automatically assigned by the compiler) or explicit (that is, you

assign the numeric constants to some or all of the enumerated values). Using

enumerated values replaces a set of integers with a more meaningful set of

identifiers called enumerators. e++ allows you to declare enumerated

, - types using the following syntax:

The declaration of an enumerated type statts·with the keyword enum and is

followed by the name of the enumerated type identifier and the list of

enumerators. This comma-delimited list is enclosed in braces and ends with

a semicolon. Here is an example of an enumerated type that represents

colors:

enum fewColors { clBlack, clWhite, clRed, clBlue, clGreen, clYellow };

The keyword enum starts the declaration of an enumerated 'type. The code

snippet declares - the enumerated type feyvColors and specifies the
..

-enumerators clBlack, clWhite, clRed, clBlue, clGreen, and clYellow. The

compiler assigns the value 0 to clBlack, 1 to clWhjte, 2 to clRed, and so on.

You can explicitly assign values to the enumerators as shown in the next

example:

enum moreColors {mclBlack = 10, mclWhite, mclRed = 20, mclBlue,

mclGreen, mclYellow };

This code snippet declares the enumerated type more Colors and includes

explicit value assignments to some of the enumerators. The compiler assign~

the value 10 to mclBlack, 11 to mclWhite, 20 to mclRed, 21 to mclBlue, 22 to

mclGreen, and 23 to mclYellow.

Here's an example program, DAYENUM, that uses an enumeration for the

days of the week:

II dayenum.cpp

II demonstrates enum types

#include <iostream>

Ilspecify enum type

enum days_oCweek { Sun, Mon, Tue, Wed, Thu, Fri, Sat};

int mainO

days_oCweek dayl, day2; Ildefine variables

Iloftype days_oCweek

dayl = Mon; llgive values to

day2 = Thu; Ilvariables

int diff= day2 - dayl; Ilcan do integer arithmeti.c

cout« "Days between = " «diff« endl;- .'

if(dayl < day2) Ilcan do comparisons

cout « "dayl cernes before day2\n";

return 0;

C++ supports the struct user-defmed type, which defines structures. These

structures are similar to records used in other programming languages. A

structure contains data members that either have a predefmed data type or

are themselves previously defmed structures.

4.2.1 Declaring Structures

The general syntax for declaring a structure type is:

struct structureName

{

typel dataMemberl;

type2 dataMember2;

II other data members

Let's look at a few examples. Here is a simple structure that defmes the x-y

coordinates of a point:

struct Point {

int x;

int y;

};

The declaration defines the structure ..Point with the int-type data members

x and y. Here is a structure that represents a complex number:

struct Complex {

double x;

double y;

};

The declaration defines the structure Complex with the double-type data

members x and y. Here is a structure that represents personal data:

struct Person

char ID_cMiddlelnitial;

char ID_cLastName[15];

int ID_BirthYear;

double ID_fWeight;

} ;

This declaration defmes the structure Personal and declares a rich set of data

members, which describe a name, a weight, and a BirthYear. Many of the data

members in structure Personal are arrays of characters, which store ASCIIZ

string data. Here is another example, one which uses nested structures:

struct Rectangle {

Point uk; II upper-left comer;

Point Irc; II lower-right comer;

};

This declaration defmes the structure Rectangle, which contains the data

members ulc and Ire, themselves previously defmed structures.

4.2.2 Declaring Structure Variables

Declaring structure variables is no different from declaring variables with

predefined types. Here is the general syntax::

II declaring a single variable

structureType structure Variable;

II declaring an array of structures

structure Type structureArray [numerOjElemens J,.

Here are examples of declaring structure variables, using the .structures that I

declared in the last subsection:

Point Origin, StartPoint, EndPoint, Points [10];

Rectangle IDyRectangle;

Person Me, You, Us[30];

These examples declare the Point-type variables Origin, StartPoint, and.•.
EndPoint. The examples also declare the Point-type array Points to have 10

elements. They additionally declare the Rectangle-type variable

myRectangle, the Person-type variables Me and You, and the Person-type

array Us.

4.2.3 Accessing Structure Members

Accessing a data member of a structure involves usmg the dot access

operator for a structure variable. Here is an example:

Point pointX; < _

pointX.x = 10;

pointX.y = 200;

Rectangle rectangle;

rectangle.ulc.x=20;

rectangle. ulc. y=30;

In the case of a pointer to a structure, use the pointer access or>erator -> to

access the data members. Here is an example:

Point pointX;

Point *ptrX = &pointX;

ptrX->x = 10;

ptrX->y = 200;

4.2.4 Initializing Structures

e++ allows you to initialize the data members of structures. This feature

resembles initializing arrays and follows similar rules. The general syntax

for initializing a structure variable is:

structureType structure Variable = { value], value2, };.•.

The compiler assIgns value] to the fIrst data member of the variable

structure Variable, value2 to the second data member of the variable

structure Variable, and so on. You need to observe the following rules:

~ The assigned values should be compatible with their corresponding

data members.

~ You can declare fewer initialing values than data members. The

compiler assigns zeros to the remaining data members of the structure

variable.

~ The initializing list sequentially assigns values to data members of

nested structures.

Keep in mind that the task of initializing structures is as simple or complex

as the initialized structures themselves.

Here are examples of initializing structures:

{

double ID_fX;

double ID_fY;

Point ID_UpperLeftComer;

Point ID_LowerRightComer;

double ID_fLength;

double ID_fWidth;

Point FocalPoint= { 12.4,34.5 };

Rectangle Shape = { 100.0,50.0,200.0,25.0 };

I I calculate the length

Shape.m_fLength = Shape.m_UpperLeftComer.m_fX-

Shape.m _LowerRightComer.m _fX;

II calculate the width

Shape.m_fWidth = Shape.ID_LowerRightComer.m_fY-

Shape.m _UpperLeftComer ,m_fY;

This example declares the structures Point and Rectangle. The example also

declares the Point-type variable FocalPoint and initializes its data members
.:""".

m_fX and m_fY with the values 12.4 and 34.5. T?~ example further declares

the Rectangle-type Shape and initializes the fITst two data members

m_UpperLeftCorner and m_LowerRightCorner. Each one of these data

members requires two initializing values since they have the type Point.

Thus, the compiler assIgns the values 100.0, 50.0, 200.0, and 25.0 to

Shap,e.m_ UpperLeftCorner.m JX, Shape. m_ UpperLeftCorner. mfl,

Shape.m _Lower RightCorner. mJX, and Shape. m_LowerRightCorner. m..fY,

respectively.

1. Write a structure specif:rcation that includes three variables-all of type int-called

hrs,mins, and secs. Call this structure time.

2. When accessing a structure member, the identifier to the left of the dot operator is the

name of

a. a structure member.

b. a structure tag.

c. a structure variable.

d. the keyword struct.

3. Write a definition that initializes the members oftimel-which is a variable of type

struct time, as defmed in Question 4-to hIs = 11, mins = 10, secs = 59.

4. An enumeration brings together a group of
a. items of different data types.

b. related data variables.

c. integ"ers with user-defmed names.

d. constant values.

5. Write a statement that declares an enumeration called players with the values B 1, B2,

'SS, B3, RF, CF, LF, P, and C.

6. A phone number, such as (212) 767-8900, can be thought of as having three parts: the

area code (212), the exchange (767), and the number (8900). Write a program that uses a

structure to store these three parts of a phone number separately. Call the structure phone.

Create two structure variables of type phone. Initialize one, and have the user input a

number for· the other one. Then display both numbers. The interchange might look like

this:

Enter your area code, exc:h~ge, and number: 415 5551212

My number is (212) 767-8900

Your number is (415) 555-1212

7. A point .on the two-dimensional plane can be represented by two numbers: an x

coordinate and a y coordinate. For example, (4,5) represents a point 4 units to the right of

the vertical axis, and 5 units up from the horizontal axis. The sum of t\VOpoints can be

defined as a new point whose x coordinate is the sum of the x coordinates of the two

~~ints, and whose y coordinate is the sum of the y coordinates. Write a program that uses

a structure called point to model a point. Define three points, and have the· user input

values to two of them. Then set the third point equal to the sum of the other two, and

display the value of the new point. Interaction with the program might look like this:

Enter coordinates for pI: 3 4

Enter coordinates for p2: 5 7

Coordinates of pI +p2 are: 8, 11

8. Create a structure called employee .!h~t contains two members: an employee number

(type int) and the employee's compensation (in dollars; type float). Ask the user to fill in..
this data for three employees, store it in three variables of type struct employee, and then

display the information for each employee.

Lecture 5

All e++ functions have certain basic features. Each function has a name, a

return type, and an optional parameter list. Functions can declare local

constants and variables. Except for the function main you should prototype

functions (that is declare them in advance). e++ functions have the

following syntax:

return Type functionN ame(parameter List)
{
II dedarations

return. expression;
}

Every function has a return type that appears before the name of the

function. The parameter list follows the function's name and is enclosed in

parentheses. The function returns a value using the return statement that

.•typically appears at the end. A function may have more than one return

statement.

The par~eter list of a function may contain one or more parameters, which

correspond to the arguments given the function when it is actually called.

The list of parameters is comma-delimited, and each parameter has the

following syntax:

You need to observe the following rules about the parameters of a function:

• Each parameter must have its own type. You cannot use the same type

to declare multiple parameters (as you can when declaring variables)

• If a function has no parameters, the parentheses that come after the

function's name contain nothing.

• The argument for·a parameter is passed by copy (or, as it is sometimes

said, "by value"), unless you insert the reference-of operator & after

the parameter's type. When a parameter passes a copy of its argument,

the function can alter only the copy of the argument used within the

function itself. The original argument remains intact. By contrast,

using the reference-of operator allows the argument to be passed by

reference by declaring the parameter as a reference to its argument. In

this case, the parameter becomes a special alias to its argument. Any

changes the function makes to the parameter also affect the argument.

• Reference parameters take arguments that are the names of variables.

You cannot use an expression or a constant as an argument to a

.reference parameter since an expression does not have an address as a

variable does.

• Copy parameters take arguments that are constants, variables, or
- ? - "

expressions. The type of argument must either match the type of the

parameter or be compatible with it. You may use typecasting to tell

the compiler how to adjust the type of the argument to match the type

of the parameter.

Here are examples of functions:

double getSquare(double x) II one parameter

{

double Squar~~double& x) II one parameter, modifies its argument

{

- int-getMin(int nNuml, int nNum2) II two parameters

{

-return (nNuml < nNum2) ? nNuml : nNum2;

}

int getSmall(int nNuml, int nNum2, int nNum3); II three parameters

{

if (nNuml < nNum2 && nNuml <nNum3)

return nNum:l ;

else if (nNum2 < nNuml && nNum2 < nNum3)

return nNum2;

else

return nNum3;

The fITst function, getSquare, has the return type double and the single

double-type parameter x. The function returns the squared value of the

parameter x. The function getSquare contains a single statement, namely

the return statement.

The second function, Square, has the return type double and the single

double-type reference parameter x. The function squares the value of the

reference parameter and returns the new value in x (this value also affects

the argument for function Square). Therefore, the function returns the

squared value in two ways: fIrst as the function's return value, and second

.using the reference parameter x.

The third function, getMin, has the return type int and the two int-type

parameters nNuml and nNum2. The function returns the smaller of the

valtles supplied by the arguments for the parameters. The function getMin

has a single statement that returns the minimum number sought. This

statement uses the conditional assignment operator.

The fourth function, getMin, has the return type int and the three int-type

parameters nNuml, nNum2, and nNum3. The function returns the smallest

value. supplied by the arguments for the three parameters. The function

getSriiall uses a multiple-alternative if-else statement to obtain the sought-

after minimum.

5.2 The. :function Declaration

e++ also supports the forward declaration of functions (which is called

prototyping). The forward declaration allows you to list the functions at the _

beginning of the source code. Such a list offers a convenient way to know

what functions are in a source code file. In addition, using the prototypes

gives the compiler advance notice of the names, return types, and parameter

lists of the various functions. You can then place the defmitions of the

fup.ctions in any order and not worry about the compile-time err2rs that

occur when you call a function before you either declare it or defme it. The

general syntax for a function prototype is:

return Type functionN ame(parameter List);

Notice that the semicolon at the end is needed for the prototype but does not

work in the function definition.

Here are the function declaration for the functions that are presented in the

last section:

d..oublegetSquare(double x); 1/ one parameter

double Square(double& x); 7/ one parameter

int getMin(int nNuml, int nNum2); II two parameters

int getSmall(int nNuml, int nNum2, int nNum3); // three parameters

Write a c++ program that computes and printes the summation of the even

numbers between 20 and 30. this program uses function to determine if the

number is even or not.

#include<iostream.h>
bool even(int x);

intmainO
{-

int sum=O;
for (int i=20;i<=40;i++)

{
if(even(i))

sum+=i;
}

CQu't«"sum= "<<sum<<endl;
return 0;

}
bool even(int x)
{

}

5.3 Math Library Functions
Math library functions allow the programmer to perform certain common

mathematical calculations. All functions in the math library return the data

type double. To use the math library functions, include the header file

<cmath>. Some math library functions are summarized in the following

table. In the table, the variables x and yare of type double.

IMethod IIDescription
..

IIExample_ ••
I

ICeil(x) Irounds x to the smallest integer ceil(9.2) is 10.0
not less than x ceil(-9.8) is -9.0

ICOS(x) Itrigonometric cosine of x ICOS(0.0) is 1.0
I(x in radians) .

lexp(x) lIexponential function eX Iexp(1.0) is 2.71828
exp(2.0) is 7.38906

Ifabs(x) lIabsolute value of x lI!a?s~ ~.~ ? ~~~.~ I

Lecture 6

Functions (2)

Recursion is a method in which a function obtains its result by calling itself.

Successive recursive calls must pass different arguments and must reach a

limit or condition where the function stops calling itself. These two simple

rules prevent a recursive function from indefInitely calling itself ..

Conceptually, recursion is a form of iteration that does not use the formal

~ fIxed or conditional loop. Many algorithms (such as calculating factorials

and performing a quicksort) can be implemented using either recursive

functions or straightforward loops. Some algorithms are easier to implement

using recursion. An example is the algorithm for parsing and evaluating

mathematical expressions. This is because an expression may contain

smaller expressions and therefore, recursion offers the best solution. In other

words, the main expression may contain nested expressions. Here is an

example:

Z = (ex + Y) * X)) + (X"'*Y) / (1 + X);

The above statement contains the nexted expressions «X + Y) * X)), (X +
Y), (X * Y), and (1 + X).

Example:
The following function calculates factorials.

. . #inc1ude<iostream.h>
int factorial(int x);

int mainO
{

cin»no;
if(no<O)
{

cout«" \n Invalid input"«endl;
return 0;

}
else
cout«" \n factorial= "«factorial(no)«endl;

return 0;

int factorial(int x)
{

if (x<=l) return 1;
else

return x*(factorial(x-l »; _

6.2 Default Arguments

C++ allows you to assign default arguments for parameters. The syntax for

the default argument is:

parameterType parameterName = initialValue

C++ requires that you observe the following rules for declaring and using

default arguments:

1. W!J.~nyou assign a default argument to a parameter, you must assign

default arguments to all subsequent parameters~

2. You may assign default arguments to any or all parameters1 as long as

you obey rule number 1.

3. The default arguments feature divides the parameter list of a function

into two parts. The first part contains parameters with no default

arguments (this list may be empty if you assign default arguments to

all parameters); the second part contains parameters with default

arguments.

.' ~ __ '~'V ~. , __ ~_ ~_' __ ~'0<1_'~. ,

4. To use a default argument for a parameter, omit the argument for that

parameter in a function call.

5. If you use a default argument for a parameter, you must use default

arguments for all subsequent parameters. In other words, you cannot

pick and choose the default arguments, because the compiler is unable

to discern which argument goes to which parameter. (After all, this is

programming and not black magic!)

-
double myPower(double fBase, int nExponent = 2);

The function myPower has the double-type parameter mase arid the int-

type parameter nExponent. The latter parameter has the default argument of

2. Thus, you can use the function myPower in this fashion:

double fX = 12.5;

double fXSquared = myPower(fX);

double fXCubed = myPower(fX, 3);

The first call to function myPower has only one argument. The compiler

resolves this call by using the default argument of 2 for parameter

nExponent. Consequently, the function myPower returns the square of the- .,.
first argument's value when you omit the argument for the exponent. By

contrast, the second call to function myPower uses the arguments fX and 3.

In this case, the compiler does not use the default argument for parameter

nExponent, since it has been given both arguments explicitly.

Example:
#include<iostream.h>
int sum(int x=2,int y=4,int z=3);

intmainO
{

int m;
m=sumO;
cout«" sumO= "«m< <endl;

m=sum(l);
cout«"sum(1)="«m«endl;

m=sum(5,6);
cout«"sum(5,6)="«m«endl;

int sum(int x,int y,int z)
{

int n=x+y+z;
return n;

By default, a function can alter the data passed by the arguments to its

parameters. If the parameter is a not a reference parameter, then the changes

made to the argument are limited to the function's scope. By contrast, if the

parameter is a reference parameter, then the changes made to the argument
- "go beyond the function's scope. You can tell the compiler that the function

should not alter the argument of a parameter by declaring that parameter as a

constant parameter. The declaration uses the keyword const and has the

following general syntax:

const parameterType[&] parameterName [= defaultArg]

Example: The following example shows how to use pointers:

int* px;

cin» x;

px= &x;

*px =*px+ 10;
cout« *px; /1 display value in variable nCount

Example: this example shows the call by reference:

#include<iostream.h>
void sum(int *x,int* y);

int mainO
{

int *n,*m;
n=new int;
m=newint;
*n=2;
*m=3;
sum(n,m);
cout«nsum= n«*n«endl;

void sum(int *x ,int *y)
{

*x=*x+*y;
return;

To prevent the function from changing the argument we use const before the
argument as follow:

#include<iostream.h>
int sum(const int *x, const int* y); .

intmainO
{

int *n,*m;
n=new int;
m=new int;
*n=2;
*m=3;

int p=sum(n,m);
cout«"sum= "«p«endl;

int sum(const int *x, const int *y)
{

int z=*x+*y;
return z;

6.4 Function Overloading

Overloaded functions in C++ are a valuable feature that allows you to

declare functions in sets of versions that have the same name but different

parameters. These parameters form. each version's signature. Using an

overloaded function empowers you to use the same name for a set of

function versions that perform. similar tasks on different data types. For

example, you can defme the function Square to obtain the squares of

parameters that have the types int, long, float, and double. Here are the

declarations of the overloaded function Square:

double Square(int i);

double Square(long i); .

oo\!ble Square(float i);

double Square(double i);

Each version of function Square has a different parameter list. When you

call the function Square, the compiler examines the data type of the

argument to decide which version of function Square to call.

Example:
#include<iostream.h>
double Square(int i);
double Square(long i);
double Square(float i);

intmainO
{

cout< <Square(1.3)<<endl;
return 0;

double Square(int i)
{ return double(i*i); }

double Square(long i)
{ return double(i *i); }

double Square(float i)
{ return double(i*i); }

double Square(double i)
{ return double(i *i); }

Example:
#include<iostream.h>

int sum(int i, intj);
int sum(int i, intj, int k);
int sum(int i, intj, int k, int 1);

int mainO
{

cout< <sum(2,3 ;5)<<endl;··
return 0; .

int sum(int i, intj)
{ return i+j; }

int sum(int i, int j, int k)
{ return i+j+k; }

int sum(int i, int j, int k, int 1)
{ return i+j+k+l; }

1. Show the value of x after each of the following statements is performed:

a) x = fabs(7.5)

b) x = floor(7.5)

c) x = fabs(0.0)

d) x = cei1(0.0)

e) x = fabs(-6.4)

f) x = cei1(-6.4)

g) x = cei1(-fabs(-8 + floor(-5.5)))

2. Write a function multiple that determines for a pair of integers whether the second

integer is a multiple of the first. The function should take two integer arguments and

return true if the second is a multiple of the first, false otherwise. Use this function in

a program that inputs a series of pairs of integers.

3. Write a program that inputs a series of integers and passes them one at a time to

function even, which uses the modulus operator to determine whether an integer is

even. The function should take an integer argument and return true if the integer is

even and false otherwise.

4. Write, a function that displays at the left margin of the screen a solid square of

asterisks whose side is specified in integer parameter side. For example, if side is 4,

the function displays

5. Write program segments that accomplish each of the following:

a) Calculate the integer part of the quotient when integer a is divided by integer b.

b) Calculate the integer remainder when integer a is divided by integer b.

c) Use the program pieces developed in a) and b) to write a function that inputs an

integer between 1 and 32767 and prints it as a series of digits, each pair of which is

separated by two spaces. For example, th~ integer 4562 should be printed as

6. Raising a number n to a power p is the same as multiplying n by itself p times. Write a

function called powerO that takes a double value for n and an int value for p, and

returns the result as a double value. Use a default argument of 2 for p, so that if this

argument is omitted, the number n will be squared. Write a mainO function that gets

values from the user to test this function.

7. Write a function called zeroSmallerO that is passed two int arguments bt reference and

then sets the smaller of the two numbers to O. Write a mainO program to exercise this

function.

8. Write a function that takes two Distance values as arguments and returns the larger

one. Include a mainO program that accepts two Distance values from the user,

compares them, and displays the larger.

9. Write a function called swapO that interchanges two int values passed to it by the

calling program. (Note that this function swaps the values of the variables in-the calling

program, not those in the function.) You'll need to decide how to pass the arguments.

Create a mainO program to exercise the function.

10. Write a function that, when you call it, displays a message telling how manyJ4nes it

has been called: "I have been called 3 times", for instance. Write a mainO program that

calls this function at least 10 times. Try implementing this function in two different

ways. First, use a global variable-to store the count. S~Gond,use a local static variable.

Which is more appropriate? Why can't you use a local variable?

11. Write a function that returns the smallest of three double-precision, floating-point

numbers.

12. An integer number is said to be a perfect number if the sum of its factors, including 1

(but not the number itself), is equal to the number. For example, 6 is a perfect number,

because 6 = I + 2 + 3. Write a function perfect that determines whether parameter

number is a perfect number. Use this function in a program that determines and prints

all the perfect numbers between 1 and 1000. Print the factors of each perfect number to

confirm that the number is indeed perfect. Challenge the power of your computer by

testing numbers much larger than 1000.

13. An integer is said to be Pr4Pe if it is divisible by only 1 and itself. For example, 2, 3,

5 and 7 are prime, but 4, 6, 8 and 9 are not.

a) Write a function that determines whether a number is prime.

b) Use this function in a program that determines and prints all the prime numbers

between 1 and 1000.

14. Write a function that takes an integer value and returns the number with its digits

reversed. For example, given the number 7631, the function should return 1367.

base exponent

base exponent = base' base exponent-I

basel = base

16. The greatest common divisor of integers x and y is the largest integer that evenly

divides both x ~d y. Write a recursive function gcd that returns the greatest common

divisor of x and y. The gcd of x and y is defined recursively as follows: If y is equal

to 0, then gcd(x, y) is x; otherwise gcd(x, y) is gcd(y, x % y), where % is the

modulus operator.

Lecture 7

Objects and Classes

#include<iostream.h>
int sum(int x,int y);
inf"mainO
{
int a=2; //local variable
int b=3; //local variable

cout«"sum= "«sum(a, b)«endl;
return 0;

int sum(int x, int y)
{

.int z; //local variable'·
z=x+y;
return z;

global variables are defined outside of any function. (They're also defined

outside of any class, as we'll see later.) A global variable is visible to all the

functions in a file (and potentially in other files). More precisely, it is visible

to all those functions that follow the variable's definition in the I1Sting.

.. Usually you want global variables to be visible to all functions, so you put

their declarations at the beginning of the listing. Global variables are also

sometimes called external variables, since they are defined external to any

function.

Example:
#include<iostream.h>
int a; //global variable

int sumO;
int mainO
{

cout«"sum= "«sumO«endl;
return 0;

J
int sumO
{

int z; //local variable
z=:=a+b;
return z;

7.3 Simple Classes
Let's look at a simple class that gives you a general feel for the declaration

of a class and the definition of its components. The following exrrnple

illustrates a simple Employee class:

#include <iostream.h>
class Employee
{

private:
intNo;
int Salary;

. public:
// constructor
Employee(int eNo,int eSalary):No(eNo), Salary(eSalary)

{
//No=eNo;
//Salary=eSalary;

}

//destructor
-EmployeeO

{

}

void setNo(int eNo)

{ No=eNo;}

void setSalary(int eSalary)
{Salary=eSalary; }

int getNo()
{return No;}

int getSalary()
{return Salary;}

mainO
{
Employee x(2,200);
cout«"no= "«x.getNoO«endl;
cout«"Salary= "«x.getSalaryO«endl;

x.setNo(4);
x.setSalary(300);

cout«"no= "«x.getNoO«endl;
cout«"Salary= "«x.getSalaryO«endl;

return 0;
}

Example:

the following example illustrates a simple Rectangle class:

#include <iostream.h>
class Rectangle
{
private:

double m_fLength;
double m_fWidth;

public:
// constructor
Rectangle(double fLength = 0, double fWidth = 0)

{
m_fLength = ±Length;
m_fWidth = fWidth;
}

//destructor
~RectangleO

{
cout«"\n Rectangle destructor \nil;
}

double getLengthO{ return m_fLength;}
double getWidthO{ return m_fWidth;}
void setLength(double fLength){m_fLength = fLength;}
void setWidth(double fWidth){ m_fWidth = fWidth;}
double. getAreaO{return m_fLength * m_fWidth;}

}; .

mainO
{
Rectangle rect(1O.212, 20.543);

cout« "Length = " «rect.getLengthO« "\n";
cout «"Width ="« rect.getWidthO « "\n";
cout «"Area ="« rect.getAreaO « "\n";
cout « "\n";

rect.setLength(5.142);
rect.set Width(15.453);

cout« "Length = " «rect.getLengthO « "\n";
cout « "Width =" « rect.getWidthO « "\n";
cout «"Area ="« rect.getAreaO « "\n";

return 0;
}

If a data item in a class is declared as static, only one such item is created for

the entire class, no matter how many objects there are. A static data item is

useful when all obj ects of the same class must share a common item of

information. A member variable defined as static has characteristics similar

to a normal static variable: It is visible only within the class, but its lifetime
. ,

is the entire program. It continues to exist even if there are no objects of the

class. Here's an example, that demonstrates a simple static data member:
\

#include <iostream.h>
class foo
{

private:
static int count;

public:
fooO
{ count++; }
int getcountO
{ return count; }

intmainO
{

foo fl, f2, S;
cout « "count is " « fl.getcountO « endl;
cout« "count is " «f2.getcountO «endl;
cout« "count is" «S.getcountO« endl;
return 0;

